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Transition caused by multiplicative noises for finite globally coupled oscillators
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We study an ensemble ofN globally coupled oscillators driven simultaneously by additive and multiplica-
tive noises. By the numerical simulation, we find that there is a transition caused by multiplicative noises,
which is different from the one proposed by Pikovskyet al. @Z. Phys. B95, 541 ~1994!#. The difference
between them is that the former is caused by the change of the intensity of the multiplicative noises, while the
latter is caused by the change of the coupling constant. The two transitions both disappear when the number of
oscillators tends to infinity. For the former transition, with the increase of the multiplicative noise strength the
order parameter will first increase; then when it approaches a crest value, it will quickly attenuate to zero.
@S1063-651X~98!06208-4#

PACS number~s!: 05.40.1j, 47.20.Ky, 47.20.Hw
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I. INTRODUCTION

There has been an increasing interest in the influenc
noises on transitions and bifurcations@1–17#. A large num-
ber of coupled models have been proposed@2–17#. These
models are divided into two types. One type is the loca
coupled models in which each oscillator is influenced o
by its neighbors@2–9#. The other type is the globally couple
models in which the interaction does not depend on the
tance between elements@10–17#.

In Ref. @10# Pikovsky et al. investigated numerically the
collective behavior of overdamped nonlinear noise-driv
oscillators globally coupled via a mean field. They found th
when a coupling constant is increased, a transition in
dynamics of the mean field is observed and this transi
disappears when the number of oscillators tends to infin
However, Pikovskyet al. studied only the additive nois
case. In the paper we will introduce in Sec. II a model w
finite globally coupled oscillators driven simultaneously
additive and multiplicative noises. In Sec. III the transiti
for this model will be studied. A transition caused by t
change of the multiplicative noise strength will be found.

II. MODEL

Consider a system that hasN identical oscillators. Their
differential equation is

dxi

dt
5esxi2xi

3 ~ i 51, . . . ,N!, ~1!

wheres is the mean field defined ass5(1/N)( i
Nxi ande is

the coupling constant. If we consider only the internal noi
induced by the internal origin, Eq.~1! becomes

dxi

dt
5esxi2xi

31h i~ t !, ~2!
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whereh i(t) is Gaussian white noise with zero mean and
correlation function^h i(t)h j (t8)&52D2d i j d(t2t8). Equa-
tion ~2! is the model studied in Ref.@10#. We consider the
case when the system is influenced by the internal and ex
nal noises. The differential equation of the oscillators is

dxi

dt
5esxi2xi

31xij i~ t !1h i~ t !, ~3!

in which j i(t) is Gaussian noise, white in time and spa
with the statistical propertieŝ j i(t)&50, ^j i(t)j j (t8)&
52D1d i j d(t2t8), and^j i(t)h j (t8)&50. It is clear that Eq.
~3! is defined in the sense of Stratonovich calculus.

III. TRANSITION

A. Numerical simulation

By numerical calculus we find that for Eq.~3! there is the
same transition in the dynamics of the mean field when
coupling constant is increased just as that proposed by
ovsky et al. in Ref. @10#. In order to avoid unnecessary rep
etition we shall not present figures that are basically sim
to the ones in Ref.@10#. In Ref. @11# we investigated the
effect of the multiplicative noises on this transition. In th
paper we shall show a different phenomenon: a transi
caused by the multiplicative noises.

In Fig. 1 we plot the behavior ofs numerically with re-
spect tot. The figures are obtained using the method e
plained in the Appendix. The number of oscillators in t
ensemble is kept at 50. For convenience, we always set
intensity of the additive noisesD252 and the globally cou-
pling constante510. The average value of the mean fie
~the order parameter! Z5^s& ~angular brackets denote ave
aging over time! versus the intensity of the multiplicativ
noises curves is represented in Fig. 2, in which the numbe
oscillators isN550, 100, and 150. The figures show th
2760 © 1998 The American Physical Society
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FIG. 1. Fluctuations of the mean fields. The number of oscillators in the ensembleN550, the intensity of the additive noisesD252, and
the coupling constante510.
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there is a transition in the dynamics of the mean field w
the increase of the intensity of the multiplicative noise
which is different from the one proposed by Pikovskyet al.
@10#. The difference between them is that the former
caused by the change of the intensity of the multiplicat
noises, while the latter is caused by the change of the c
pling constant. For the former, with the increase of the m
tiplicative noise strength the order parameter will first
crease; then when it approaches a crest value, it will quic
attenuate to zero~cf. Fig. 2!. For the latter, with an increas
of the coupling constant, the order parameter will monoto
cally increase from zero to a definite constant~cf. Fig. 3 in
Ref. @10#!. In addition, from Fig. 2 we find that with the
increase ofN the transition caused by the change of t
intensity of the multiplicative noises becomes more a
more indistinct, which is similar to the one caused by t
change of the coupling constant~cf. Fig. 3 in Ref.@10#!.

The above results are obtained by numerical simulat
Below we shall carry out some theoretical analysis for E
~3!.
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. FIG. 2. Average mean fieldZ5^s& versus the intensity of the
multiplicative noisesD1. D252 ande510.
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B. Theoretical analysis

Let us first consider the case ofN→`. In this case we can
drop the subscripti in the following since Eq.~3! is similar
for every sitei . So Eq.~3! becomes

dx

dt
5esx2x31xj~ t !1h~ t !. ~4!

Whens51, Eq. ~3! has been investigated intensively and
is an archetypical bistable model with an overdamped p
ticle moving in a double well potentialV(x)5x4/4
2(e/2)x2 (e.0). The termxj(t) can be understood as th
motion of a Brownian particle on the background of a m
dium whose density distribution is directly proportional
uxu.

In the limit of N→`, the self-consistent Weiss mean-fie
approach of Desai and Zwanzig is valid@18# and the Weiss
mean fieldZ5^x&5s. The system can be described by
nonlinear Fokker-Planck equation for the probability dens
P(x,t) @19,20#,

] tP~x,t !52]xF~x!P~x,t !1]x
2D~x!P~x,t !, ~5!

with F(x)5(es1D1)x2x3 andD(x)5D21D1x2. The sta-
tionary solution of Eq.~5! under the natural boundary con
dition is @19,20#

Pst~x!5M 21~D21D1x2!cexp@2x2/2D1#, ~6!

wherec5(es2D11D2 /D1)/2D1 and M is the normaliza-
tion constant. Obviously,Pst(x) is symmetrical, so we can
get Z5^x&5s5*2`

` xPst(x)dx50. Thus there is no phas
transition in the limitN→` ~the thermodynamic limit!. In
the following, we shall consider the case when the numbe
oscillators is finite.

If N51 ands5x, the Langevin equation~3! turns into

dx

dt
5ex22x31xj~ t !1h~ t !. ~7!

The Fokker-Planck equation for the probability density
the diffusion process, defined by Eq.~7!, reads

] tP~x,t !52]x~ex21D1x2x3!P~x,t !

1]x
2~D21D1x2!P~x,t !. ~8!

By analyzing Eq.~8! and its stationary solution further, som
valuable information can be obtained. The extrema of
stationary probability Pst(x) can be determined from
dPst(x)/dx50. Now x50 is always an extremum and th
others are given by the solutions of the equation

x22ex1D150 for D1Þ0. ~9!

When D1,e2/4, the stationary state will be bistable andx
50 andx5(e1Ae224D1)/2 @or x5(e2Ae224D1)/2# are
r-

-

y

of

f

e

the maximum points. WhenD1.e2/4, the stationary state fo
the system will be monostable andx50 is the maximum
point for the stationary probability density. Thus we say th
if D1Þ0 there is a transition for the stationary probabili
with the change ofD1 ~the multiplicative noise strength!. It
is clear that the reason why the transition for Eq.~7! happens
is the action of the coupling term in the Langevin equatio
If N is small, the coupling term still has this action on th
transition of the system. With the increase ofN, this action
becomes more and more poor. WhenN→`, this action will
disappear.

From the above study of Eq.~3! we know that there is a
critical value ofD1 whenN is finite. WhenD1 is larger than
the critical value, the system will be in the state with a ze
average mean field. WhenD1 is smaller than the critica
value, the system will be in the state with a nonzero aver
mean field. We can roughly estimate the critical value ofD1.
From Fig. 2 one observes that whenN tends to infinity the
critical value ofD1 appears to go to zero. In the special ca
of N51, the critical value isD15e2/4. In the case when the
number of oscillators in the ensemble isN, we can approxi-
mately set the critical value to

D15D1
~0!;

K~e!e

Na
, ~10!

whereK(e) is a function ofe anda is a positive constant.

APPENDIX

From Ref.@21# we can get the numerical algorithm of Eq
~3!

xi~ t1Dt !5xi~ t !1@es~ t !xi~ t !2xi
3~ t !#Dt1x1

~ i !~ t,Dt !

1x2
~ i !~ t,Dt !, ~A1!

where x1
( i )(t,Dt)5@D1xi(t)(f1

( i ))21D1D2f1
( i )f2

( i )#Dt and
x2

( i )(t,Dt)5xi(t)A2D1Dtf1
( i )1A2D2Dtf2

( i ) . f1
( i ) and f2

( i )

are two independent Gaussian random numbers of zero m
and variance equal to 1. Moreover, we know that the stoch
tic Runge-Kutta method@22# is more accurate than the one
step Euler method. If we consider the Runge-Kutta meth
the algorithm~A1! should be changed as

xi~ t1Dt !5xi~ t !1
1

2
@es~ t !xi~ t !2xi

3~ t !1 f i~ t,Dt !#Dt

1x1
~ i !~ t,Dt !1x2

~ i !~ t,Dt !, ~A2!

in which

f i~ t,Dt !5es~ t !$xi~ t !1@es~ t !xi~ t !2xi
3~ t !#Dt1x1

~ i !~ t,Dt !

1x2
~ i !~ t,Dt !%2$xi~ t !@es~ t !xi~ t !2xi

3~ t !#Dt

1x1
~ i !~ t,Dt !1x2

~ i !~ t,Dt !%3,

x1
( i )(t,Dt), and x2

( i )(t,Dt) are similar to those in Eq.~A1!.
Equation ~A2! is the algorithm that we have used in th
paper.
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