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Transition caused by multiplicative noises for finite globally coupled oscillators
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We study an ensemble of globally coupled oscillators driven simultaneously by additive and multiplica-
tive noises. By the numerical simulation, we find that there is a transition caused by multiplicative noises,
which is different from the one proposed by Pikovsityal. [Z. Phys. B95, 541 (1994)]. The difference
between them is that the former is caused by the change of the intensity of the multiplicative noises, while the
latter is caused by the change of the coupling constant. The two transitions both disappear when the number of
oscillators tends to infinity. For the former transition, with the increase of the multiplicative noise strength the
order parameter will first increase; then when it approaches a crest value, it will quickly attenuate to zero.
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I. INTRODUCTION . . . . .
where 7;(t) is Gaussian white noise with zero mean and the

(%orrelation function( 7;(t) 7;(t"))=2D,6; 6(t—t"). Equa-

lon (2) is the model studied in Ref10]. We consider the
case when the system is influenced by the internal and exter-
nal noises. The differential equation of the oscillators is

There has been an increasing interest in the influence
noises on transitions and bifurcatiofts-17]. A large num-
ber of coupled models have been propo$2dl7]. These
models are divided into two types. One type is the locally
coupled models in which each oscillator is influenced only
by its neighbor$2-9]. The other type is the globally coupled dx
models in which the interaction does not depend on the dis- ——=esx— X+ X &(t)+ 7(1), ©)
tance between elements0—-17). dt

In Ref. [10] Pikovskyet al. investigated numerically the
coII_ectlve behavior of overdamped no.nllnear n0|se-dr|venIn which £(t) is Gaussian noise, white in time and space
oscillators globally coupled via a mean field. They found that . L ) = ,

X T Lo with the statistical properties(&;(t))=0, (&(t)&(t"))
when a coupling constant is increased, a transition in the:2D 5. 8(t—t'), and(&(t) 7;(t'))=0. It is clear tr{at Eq
dynamics of the mean field is observed and this transitio 3) isldclelfined in Ehe senlse gfl Stratonc;vich calculus )
disappears when the number of oscillators tends to infinity. '
However, Pikovskyet al. studied only the additive noise
case. In the paper we will introduce in Sec. Il a model with IIl. TRANSITION
finite globally coupled oscillators driven simultaneously by
additive and multiplicative noises. In Sec. Ill the transition
for this model will be studied. A transition caused by the By numerical calculus we find that for E(B) there is the
change of the multiplicative noise strength will be found. same transition in the dynamics of the mean field when the

coupling constant is increased just as that proposed by Pik-
Il. MODEL ovsky et al. in Ref.[10]. In order to avoid unnecessary rep-
etition we shall not present figures that are basically similar

Consider a system that ha&kidentical oscillators. Their to the ones in Ref[10]. In Ref. [11] we investigated the

A. Numerical simulation

differential equation is effect of the multiplicative noises on this transition. In this
paper we shall show a different phenomenon: a transition
dx; caused by the multiplicative noises.
Ezesx—xf’ (i=1,...N), (1) In Fig. 1 we plot the behavior o§ numerically with re-

spect tot. The figures are obtained using the method ex-
plained in the Appendix. The number of oscillators in the
wheres is the mean field defined as=(1/N)=Nx; ande is ~ ensemble is kept at 50. For convenience, we always set the

the coupling constant. If we consider only the internal noisedntensity of the additive noiselS,=2 and the globally cou-
induced by the internal origin, Eq1) becomes pling constante=10. The average value of the mean field
(the order parametgZ=(s) (angular brackets denote aver-

aging over timg versus the intensity of the multiplicative
noises curves is represented in Fig. 2, in which the number of
oscillators isN=50, 100, and 150. The figures show that

dx; 3
gt €SN TX + 7i(1), 3]
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FIG. 1. Fluctuations of the mean fiedd The number of oscillators in the ensemble 50, the intensity of the additive noisBs=2, and
the coupling constanté=10.

there is a transition in the dynamics of the mean field with 3
the increase of the intensity of the multiplicative noises, O
which is different from the one proposed by Pikovsiyal.
[10]. The difference between them is that the former is
caused by the change of the intensity of the multiplicative
noises, while the latter is caused by the change of the cou- 2r O
pling constant. For the former, with the increase of the mul- &
tiplicative noise strength the order parameter will first in- ~
crease; then when it approaches a crest value, it will quickly 0®
attenuate to zer¢cf. Fig. 2). For the latter, with an increase e®®
of the coupling constant, the order parameter will monotoni- 1 +®
cally increase from zero to a definite constéeft Fig. 3 in ! ° ©
Ref. [10]). In addition, from Fig. 2 we find that with the 05
increase ofN the transition caused by the change of the o
intensity of the multiplicative noises becomes more and % © - ’
more indistinct, which is similar to the one caused by the 0 bies®0 0o o Lov—a—od
change of the coupling constafaf. Fig. 3 in Ref.[10]).
The above results are obtained by numerical simulation. D

Below we shall carry out some theoretical analysis for Eq. FIG. 2. Average mean field=(s) versus the intensity of the
3. multiplicative noised;. D,=2 ande=10.
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B. Theoretical analysis the maximum points. WheR ;> €/4, the stationary state for

Let us first consider the case lf—. In this case we can the system will be monostable and=0 is the maximum

drop the subscriptt in the following since Eq(3) is similar point for the stationary probability density. Thus we say that
for every sitei. So Eq.(3) becomes if D;#0 there is a transition for the stationary probability

with the change oD, (the multiplicative noise strengthlt
q is clear that the reason why the transition for E€).happens
ax_ esx—x3+x£(H) + p(b). (4) is the_ action of the coupling term i_n the Langevir_1 equation.
dt If N is small, the coupling term still has this action on the
transition of the system. With the increaseNof this action
Whens=1, Eq.(3) has been investigated intensively and it becomes more and more poor. WHe#- o, this action will
is an archetypical bistable model with an overdamped pardisappear. _
ticle moving in a double well potentialV(x)=x%4 From the above study of E¢3) we know that there is a
—(el2)x? (e>0). The termx£(t) can be understood as the critical value ofD; whenN is finite. WhenD, is larger than
motion of a Brownian particle on the background of a me-the critical value, the system will be in the state with a zero
dium whose density distribution is directly proportional to average mean field. WheD, is smaller than the critical
Ix]. value, the system will be in the state with a nonzero average
In the limit of N—, the self-consistent Weiss mean-field mean field. We can roughly estimate the critical valu®ef
approach of Desai and Zwanzig is valiti8] and the Weiss From Fig. 2 one observes that whihtends to infinity the
mean fieldZ=(x)=s. The system can be described by acritical value ofD, appears to go to zero. In the special case
nonlinear Fokker-Planck equation for the probability densityof N=1, the critical value i ;= €°/4. In the case when the
P(x,t) [19,20, number of oscillators in the ensembleNs we can approxi-
mately set the critical value to

P (X,1)=— a,F (X)P(x,t) + 32D (X) P(x,1), (5)

K(e)e
D1=D<1°>~—( a) , (10
with F(x)=(es+D;)x—x% andD(x)=D,+ D;x2. The sta- N
gic;ir:)e:]r);ss[ilgtlztgl of Bq/(5) under the natural boundary con- whereK(¢) is a function ofe and « is a positive constant.
APPENDIX
Ps(X)=M YD, + D x?)%exd —x?/2D,], (6)

From Ref[21] we can get the numerical algorithm of Eq.

wherec=(es—D;+D,/D;)/2D, andM is the normaliza- 3
tion constant. ObviouslyP.(x) is symmetrical, so we can ‘
get Z=(x)=s=["_xPg(x)dx=0. Thus there is no phase  x;(t+At)=x;(t)+[es(t)x;(t)—x>(t)]At+x{"(t,At)
transition in the limitN—< (the thermodynamic limjt In W
the following, we shall consider the case when the number of +x3 (t,At), (A1)
oscillators is finite.
If N=1 ands=x, the Langevin equatiofB) turns into where x(li)(t,At)=[D1xi(t)(¢(1i))2+ D1D2¢g)¢§i)]At and
xP(t,At) =x;(t) V2D At () + 2D ,At 44 . ¢ and ¢y
dx 5 are two independent Gaussian random numbers of zero mean
qr - XTTXHXED+ (). () and variance equal to 1. Moreover, we know that the stochas-
tic Runge-Kutta methofl22] is more accurate than the one-
The Fokker-Planck equation for the probability density ofstep Euler method. If we consider the Runge-Kutta method,

the diffusion process, defined by E{T), reads the algorithm(Al) should be changed as
1
IP(X,t) = = dy(ex’+ D 1x—X*)P(x,t) Xi(t+ A =x(1) + 5[ es(tx(1) =X} + fi(t, A AL
+ 9%(D,+ D X3 P(X,t). 8 _ _
(D2t Dxt)POGY ® +x{(t, At +x5(t,At), (A2)

By analyzing Eq(8) and its stationary solution further, some ; \which

valuable information can be obtained. The extrema of the

stationary probability Ps(x) can be determined from f;(t,At)=es(t){x;(t)+[es(t)x;(t)—x3(t)JAt+x{(t,At)

dPg(x)/dx=0. Now x=0 is always an extremum and the )

others are given by the solutions of the equation +x50 (1, AD}— {xi (D[ es(t)x; (1) —x (1) ]At

+xP(t, At + x5 (t,A1))3,

x?—ex+D;=0 for D;#0. 9) 1 (LAD+X (LA}
x{(t,At), andx{)(t,At) are similar to those in Eq(Al).

When D, < €/4, the stationary state will be bistable ard Equation (A2) is the algorithm that we have used in this

=0 andx=(e+e?—4D,)/2 [or x=(e— \e?’—4D;)/2] are  paper.
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